
Topic 6: Programming Languages

ICT170: Foundations of Computer Systems

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 2

• Overview

• Chronology

• A Selection of Languages

• Python Labs

• Summary

Overview

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 3

In order to achieve the unit learning objectives, on successful
completion of this topic, you should be able to:

• Understand different styles of programming languages

• History of programming languages

• Roles and building blocks of a programming language

Objectives

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 4

Reading

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 5

Reading

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 6

Reading

Overview: Programming
Languages

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 8

What is a Programming Language?

Options:

• A formal language for describing computation?

• A “user interface” to a computer?

• Syntax + semantics?

• Compiler, or interpreter, or translator?

• A tool to support a programming paradigm?

A programming language is a notational system for
describing computation in a machine-readable and human-
readable form.

— Programming Languages: Principles and
Practice by Kenneth C. Louden

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 9

What is a Programming Language?

A programming language is a tool for
developing executable models for a class of
problem domains.

Another view:

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 10

Why Are There So Many Programming
Languages

• Why do some people speak English? Some French?

• Programming languages have evolved over time as better
ways have been developed to design them.

• First programming languages were developed in the 1950s

• Since then thousands of languages have been developed

• Different programming languages are designed for different
types of programs.

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 11

Levels of Programming Languages

High-level program

class Triangle {

...

float surface()

return b*h/2;

}

Low-level program
LOAD r1,b

LOAD r2,h

MUL r1,r2

DIV r1,#2

RET

Executable Machine code 0001001001000101001001

001110110010101101001.

..

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 12

Generations of Programming
Languages

 First Generation Languages

Machine

0000 0001 0110 1110

0100 0000 0001 0010

 Third Generation Languages

High-level imperative/object oriented

public Token scan () {

while (currentchar == ‘ ’

|| currentchar == ‘\n’)

{….} }

 Fourth Generation Languages

Database

select fname, lname

from employee

where department=‘Sales’

 Fifth Generation Languages

Functional Logic

fact n = if n==0 then 1 uncle(X,Y) :- parent(Z,Y), brother(X,Z).

else n*(fact n-1)

Fortran, Pascal, Ada, C, C++, Java, C#

SQL

Lisp, SML, Haskel, Prolog

Second Generation Languages
Assembly

LOAD x
ADD R1 R2

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 13

Some talk about

• Agent Oriented Programming

• Aspect Oriented Programming

• Intentional Programming

• Natural language programming

Maybe you will invent the next big language

Beyond Fifth Generation Languages

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 14

Common Constructs:

• basic data types (numbers, etc.); variables; expressions;
statements; keywords; control constructs; procedures;
comments; errors ...

Uncommon Constructs:

• type declarations; special types (strings, arrays, matrices, ...);
sequential execution; concurrency constructs; packages/modules;
objects; general functions; generics; modifiable state; ...

How do Programming Languages Differ?

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 15

Programming Paradigms

A programming language is a problem-solving tool.

Imperative style:

Fortran, Pascal, C
program = algorithms + data

good for decomposition

Functional style:

Lisp, Scheme, Haskell,
SML, F#

program = functions and functions

good for reasoning

Logic programming style:

Prolog
program = facts + rules

good for searching

Object-oriented style:

Simula, SmallTalk, C++,
Java, C#

program = objects + messages

good for modeling(!)

Other styles and paradigms: blackboard, pipes and filters,

constraints, lists, ...

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 16

Formerly: Run-time performance

• (Computers were more expensive than programmers)

Now: Life cycle (human) cost is more important

• Ease of designing, coding

• Debugging

• Maintenance

• Reusability

FADS

What determines a “good” language

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 17

Criteria in a good language design

• Readability

• understand and comprehend a computation easily and
accurately

• Write-ability

• express a computation clearly, correctly, concisely, and quickly

• Reliability

• assures a program will not behave in unexpected or disastrous
ways

• Orthogonality

• A relatively small set of primitive constructs can be combined
in a relatively small number of ways

• Every possible combination is legal

• Lack of orthogonality leads to exceptions to rules

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 18

Criteria in a good language design

• Uniformity

• similar features should look similar and behave similar

• Maintainability

• errors can be found and corrected and new features added
easily

• Generality

• avoid special cases in the availability or use of constructs and
by combining closely related constructs into a single more
general one

• Extensibility

• provide some general mechanism for the user to add new
constructs to a language

• Standardability

• allow programs to be transported from one computer to
another without significant change in language structure

• Implementability

• ensure a translator or interpreter can be written

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 19

Usually CFG are written in BNF notation.

A production rule in BNF notation is written as:

N ::= a where N is a non terminal
and a a sequence of terminals and non-terminals

N ::= a | b | ... is an abbreviation for several rules with N

as left-hand side.

Backus-Naur Form

Inside a programming
language

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 21

Interpreter

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 22

Several languages are used to add dynamics and animation to HTML.

Many programming languages are executed (possibly
simultaneously) in the browser!

We use lots of interpreters every day!

HTML Interpreter
(display formatting)

VBScript
Interpreter
(compiler)

Java Virtual
Machine (JVM)

Communications
facilities

JavaScript
Interpreter

script

HTML
page

Browser

script

Control /
HTML

applet

Control /
HTML

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 23

And also across the web

Web-Client
Web-Server

DBMS

Database
Output

SQL

commands

PHP

Script

HTML-Form

(+JavaScript)

Reply

WWW

Submit
Data

Call PHP
interpreter

Response Response

LAN

Web-Browser

Database
Server

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 24

Source code to machine code

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 25

• Compilation is at least a two-step process, in which the original
program (source program) is input to the compiler, and a new
program (target program) is output from the compiler. The
compilation steps can be visualized as the following.

Compilation

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 26

Compiler

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 27

Hybrid compiler / interpreter

Chronology

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 29

A Brief Chronology

Early 1950s “order codes” (primitive assemblers)

1957 FORTRAN the first high-level programming language

1958 ALGOL the first modern, imperative language

1960 LISP, COBOL Interactive programming; business programming

1962 APL, SIMULA the birth of OOP (SIMULA)

1964 BASIC, PL/I

1966 ISWIM first modern functional language (a proposal)

1970 Prolog logic programming is born

1972 C the systems programming language

1975 Pascal, Scheme two teaching languages

1978 CSP Concurrency matures

1978 FP Backus’ proposal

1983 Smalltalk-80, Ada OOP is reinvented

1984 Standard ML FP becomes mainstream (?)

1986 C++, Eiffel OOP is reinvented (again)

1988 CLOS, Oberon, Mathematica

1990 Haskell FP is reinvented

1990s Perl, Python, Ruby, JavaScript Scripting languages become mainstream

1995 Java OOP is reinvented for the internet

2000 C#

A Selection of
Languages

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 31

Contemporary programming
languages

Source: IEEE Spectrum 20 July 2015

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 32

The 2017 top ten programming
languages

Source: IEEE Spectrum 18 July 2017

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 33

The 2016 top ten programming
languages

Source: IEEE Spectrum 26 July 2016

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 34

The 2015 top ten programming
languages

Source: IEEE Spectrum 20 July 2015

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 35

History

• John Backus (1953) sought to write programs in
conventional mathematical notation, and generate code
comparable to good assembly programs.

• No language design effort (made it up as they went along)

• Most effort spent on code generation and optimization

• FORTRAN I released April 1957; working by April 1958

• The current standard is FORTRAN 2003
(FORTRAN 2008 is work in progress)

Fortran

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 36

Innovations

• Symbolic notation for subroutines and functions

• Assignments to variables of complex expressions

• DO loops

• Comments

• Input/output formats

• Machine-independence

Successes

• Easy to learn; high level

• Promoted by IBM; addressed large user base

• (scientific computing)

Fortran …

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 37

“Hello World” in FORTRAN

All examples from the ACM "Hello World" project:

www2.latech.edu/~acm/HelloWorld.shtml

PROGRAM HELLO

DO 10, I=1,10

PRINT *,'Hello World'

10 CONTINUE

STOP

END

http://www2.latech.edu/~acm/HelloWorld.shtml

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 38

History

• Committee of PL experts formed in 1955 to design universal,
machine-independent, algorithmic language

• First version (ALGOL 58) never implemented; criticisms led to
ALGOL 60

Innovations

• BNF (Backus-Naur Form) introduced to define syntax (led to
syntax-directed compilers)

• First block-structured language; variables with local scope

• Structured control statements

• Recursive procedures

• Variable size arrays

Successes

• Highly influenced design of other PLs but never displaced
FORTRAN

ALGOL 60

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 39

“Hello World” in ALGOL

BEGIN

FILE F (KIND=REMOTE);

EBCDIC ARRAY E [0:11];

REPLACE E BY "HELLO WORLD!";

WHILE TRUE DO

BEGIN

WRITE (F, *, E);

END;

END.

BEGIN

FILE F (KIND=REMOTE);

EBCDIC ARRAY E [0:11];

REPLACE E BY "HELLO WORLD!";

WRITE (F, *, E);

END.

BEGIN

FILE F (KIND=REMOTE);

WRITE (F, <"HELLO

WORLD!“>);

END.

BEGIN DISPLAY("HELLO WORLD!")

END.

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 40

History

• Designed by committee of US computer manufacturers

• Targeted business applications

• Intended to be readable by managers (!)

Innovations

• Separate descriptions of environment, data, and processes

Successes

• Adopted as de facto standard by US DOD

• Stable standard for 25 years

• Still the most widely used PL for business applications (!)

COBOL

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 41

“Hello World” in COBOL

IDENTIFICATION DIVISION.

PROGRAM-ID. HELLOWORLD.

DATE-WRITTEN. 02/05/96 21:04.

AUTHOR BRIAN COLLINS

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. RM-COBOL.

OBJECT-COMPUTER. RM-COBOL.

DATA DIVISION.

FILE SECTION.

PROCEDURE DIVISION.

DISPLAY 'Hello World'.

STOP RUN.

http://www.tutorialspoint.com/cobol/

http://www.tutorialspoint.com/cobol/

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 42

History

• Designed by committee of IBM and users (early 1960s)

• Intended as (large) general-purpose language for broad classes of
applications

Innovations

• Support for concurrency (but not synchronization)

• Exception-handling on conditions

Successes

• Achieved both run-time efficiency and flexibility (at expense of
complexity)

• First “complete” general purpose language

PL/1

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 43

• treats computation as the evaluation of mathematical functions
and avoids changing-state and mutable data.

• is a declarative programming paradigm, which means
programming is done with expressions or declarations instead of
statements

ISWIM (If you See What I Mean): Peter Landin (1966) — paper
proposal

FP: John Backus (1978) — Turing award lecture

ML:

• initially designed as meta-language for theorem proving

• Hindley-Milner type inference

• “non-pure” functional language (with assignments/side effects)

Miranda, Haskell: “pure” functional languages with “lazy
evaluation”

Functional Languages

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 44

History

• Originated at U. Marseilles (early 1970s), and compilers developed
at Marseilles and Edinburgh (mid to late 1970s)

Innovations

• Theorem proving paradigm

• Programs as sets of clauses: facts, rules and questions

• Computation by “unification”

Successes

• Prototypical logic programming language

• Used in Japanese Fifth Generation Initiative

Prolog

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 45

History

• Simula was developed by Nygaard and Dahl (early 1960s) in Oslo
as a language for simulation programming, by adding classes and
inheritance to ALGOL 60

• Smalltalk was developed by Xerox PARC (early 1970s) to drive
graphic workstations

Object-Oriented Languages

Begin

while 1 = 1 do begin

outtext ("Hello World!");

outimage;

end;

End;

Transcript show:'Hello World';cr

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 46

Innovations

• Encapsulation of data and operations (contrast ADTs)

• Inheritance to share behaviour and interfaces

Successes

• Smalltalk project pioneered OO user interfaces

• Large commercial impact since mid 1980s

• Countless new languages: C++, Objective C, Eiffel, Beta, Oberon, Self, Perl

5, Python, Java, Ada 95 ...

Object-Oriented Languages

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 47

• Made possible by advent of time-sharing systems (early
1960s through mid 1970s).

BASIC

• Developed at Dartmouth College in mid 1960s

• Minimal; easy to learn

• Incorporated basic O/S commands (NEW, LIST, DELETE,
RUN, SAVE)

Interactive Languages

10 print "Hello World!"

20 goto 10

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 48

APL

• Developed by Ken Iverson for concise description of numerical
algorithms

• Large, non-standard alphabet (52 characters in addition to
alphanumerics)

• Primitive objects are arrays (lists, tables or matrices)

• Operator-driven (power comes from composing array operators)

• No operator precedence (statements parsed right to left)

Interactive Languages ...

'HELLO WORLD'

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 49

SNOBOL

• First successful string manipulation language

• Influenced design of text editors more than other PLs

• String operations: pattern-matching and substitution

• Arrays and associative arrays (tables)

• Variable-length strings

...

Special-Purpose Languages

OUTPUT = 'Hello World!'

END

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 50

Lisp

• Performs computations on symbolic expressions

• Symbolic expressions are represented as lists

• Small set of constructor/selector operations to create and
manipulate lists

• Recursive rather than iterative control

• No distinction between data and programs

• First PL to implement storage management by garbage collection

• Affinity with lambda calculus

Symbolic Languages ...

(DEFUN HELLO-WORLD ()

(PRINT (LIST 'HELLO 'WORLD)))

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 51

Scripting Languages

History

Countless “shell languages” and “command languages” for
operating systems and configurable applications

echo "Hello, World!"

on OpenStack

show message box

put "Hello World!" into message box

end OpenStack

puts "Hello World "

print "Hello, World!\n";

> Unix shell (ca. 1971)
developed as user shell and
scripting tool

> HyperTalk (1987) was
developed at Apple to script
HyperCard stacks

> TCL (1990) developed as
embedding language and
scripting language for X
windows applications (via Tk)

> Perl (~1990) became de facto
web scripting language

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 52

Innovations

Pipes and filters (Unix shell)

Generalized embedding/command languages (TCL)

Successes

Unix Shell, awk, emacs, HyperTalk, AppleTalk, TCL, Python, Perl, VisualBasic

...

Scripting Languages ...

Python

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 54

• a high-level, general-purpose, interpreted, dynamic programming
language.

• with design philosophy emphasizes code readability

• Python supports multiple programming paradigms, including object-
oriented, imperative and functional programming or procedural styles.

• Invented in the Netherlands, early 90s by Guido van Rossum

• Named after Monty Python

• Open sourced from the beginning

• Considered a scripting language, but is much more

• Scalable, object oriented and functional from the beginning

• Used by Google from the beginning

• Increasingly popular – is awesome!

Brief History of Python

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 55

“Python is an experiment in how much
freedom programmers need. Too much
freedom and nobody can read another's
code; too little and expressiveness is
endangered.”

- Guido van Rossum

Brief History of Python

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 56

Typical Python implementations offer
both an interpreter and compiler

Interactive interface to Python:

On Unix…

% python

>>> 3+3

6

Python prompts with ‘>>>’.

To exit Python (not Idle):

In Unix, type CONTROL-D

In Windows, type CONTROL-Z + <Enter>

Evaluate exit()

The Python Interpreter

Summary

ICT170: Foundations of Computer Systems, Topic 6. Ferdous Sohel 58

• Overview

• Chronology

• A Selection of Languages

Summary

